ar X iv : 0 90 6 . 55 92 v 2 [ nu cl - t h ] 1 6 Se p 20 09 Bulk Viscosity of Interacting Hadrons

نویسنده

  • M. Prakasha
چکیده

We show that first approximations to the bulk viscosity ηv are expressible in terms of factors that depend on the sound speed vs, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of ηv on the factor ( 1 3 − v 2 s ) is demonstrated in the ChapmanEnskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 9 . 29 83 v 1 [ m at h . N T ] 1 6 Se p 20 09 COMBINATORIAL IDENTITIES INVOLVING THE MÖBIUS FUNCTION

In this paper we derive some identities and inequalities on the Möbius mu function. Our main tool is phi functions for intervals of positive integers and their unions.

متن کامل

ar X iv : 0 90 6 . 32 55 v 1 [ m at h . N T ] 1 7 Ju n 20 09 THE OVERCONVERGENT SHIMURA LIFTING by Nick Ramsey

— We construct a rigid-analytic map from the the author’s half-integral weight cuspidal eigencurve (see [10]) to its integral weight counterpart that interpolates the classical Shimura lifting.

متن کامل

ar X iv : 0 90 6 . 54 78 v 1 [ m at h - ph ] 3 0 Ju n 20 09 SPECTRAL AND SCATTERING THEORY OF SPACE - CUTOFF CHARGED P ( φ ) 2 MODELS

We consider in this paper space-cutoff charged P (ϕ) 2 models arising from the quantization of the non-linear charged Klein-Gordon equation: (∂t + iV (x)) 2 φ(t, x) + (−∆x + m 2)φ(t, x) + g(x)∂ z P (φ(t, x), φ(t, x)) = 0, where V (x) is an electrostatic potential, g(x) ≥ 0 a space-cutoff and P (λ, λ) a real bounded below polynomial. We discuss various ways to quantize this equation, starting fr...

متن کامل

ar X iv : 0 90 6 . 33 84 v 1 [ m at h . A P ] 1 8 Ju n 20 09 ENERGY DISPERSED LARGE DATA WAVE MAPS IN 2 + 1 DIMENSIONS

In this article we consider large data Wave-Maps from R into a compact Riemannian manifold (M, g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. This is a companion to our concurrent article [21], which together with the present work establishes a full regularity theory for large data Wave-Maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009